Supporting information

Design, Synthesis and Anticancer Activity Studies of Novel Pyrazolo[1,5-a]pyrimidine-Nitrogen Mustard Derivatives
Zhao Mingxia ${ }^{1}$, Zhang Dongxia ${ }^{2}$, Chang Jin ${ }^{3}$, Zhao Zhiju ${ }^{4}$, Qi Chuanmin ${ }^{5, *}$, Jiang Junbing ${ }^{1, *}$
(${ }^{1}$ Department of Mining Engineering, Shanxi Institute of Technology, Yangquan 045000; ${ }^{2}$ Xingtang General Hospital, Xingtang, 050600;
${ }^{3}$ College of Biomedical Engineering, Taiyuan University of Technology, ${ }^{4}$ College of Chemical Engineering and Biotechnology, Xingtai University, Xingtai 054001; ${ }^{5}$ Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875)

Contents:

1. Table S1: Details of data collection and structure refinement for compounds $\mathbf{7 m}$ and 9b.
2. Table S2: Selected bond lengths ((\AA) and bond angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{7 m}$ and 9b.
3. ${ }^{1} \mathrm{H}$-NMR of target compounds
4. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of target compounds
5. MS of target compounds
6. IR of target compounds
7. Table S1: Details of data collection and structure refinement for compounds

7m and 9b.

compounds	7m	9b
Formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{Cl}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{Cl}_{3}$
Mr	352.83	423.73
CCDC	1014303	1014302
Temperature (K)	296(2)	296(2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P2(1)/c	P-1
$a / \AA{ }^{\text {a }}$	10.014(2)	8.427(3)
$b / A ̊$	14.029(3)	8.754(3)
c/Å	12.205(3)	15.384(5)
$\alpha /^{\circ}$	90	78.074(6)
$\beta 1^{\circ}$	101.978(4)	74.564(5)
$\gamma{ }^{\prime}$	90	70.411(5)
V / \AA^{3}	1677.3(6)	1022.0(6)
Z	4	2
$D \mathrm{c} / \mathrm{g} \mathrm{cm}^{-3}$	1.397	1.377
μ / mm^{-1}	0.242	0.464
$F(000)$	736.0	436.0
Crystal size (mm)	$0.28 \times 0.22 \times 0.16$	$0.28 \times 0.26 \times 0.18$
θ range /deg.	2.08-27.48	1.38-27.64
reflns collected /unique	3828/2959	4699/3088
GOF on F^{2}	1.072	1.073
$R_{\text {int }}$	0.0332	0.0254
$R_{1}{ }^{\text {a })}, w R_{2}{ }^{\text {b }}{ }^{\text {[}}$ ($\left.>2 \sigma(I)\right]$	0.0559, 0.1575	0.0938, 0.2895
$R_{1}, w R_{2}$ (all data)	0.0737, 0.1693	$0.1269,0.3220$

a) $\quad R_{1}=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right| / \Sigma\right| \mathrm{F}_{\mathrm{o}} \mid$. b) $w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.
2. Table S2: Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for compounds 7 m and 9b.

Bond Length [\AA]		Bond Angles [${ }^{\circ}$]	
Compound 7m			
C11-C18	1.773(3)	C9-N1-C16	112.67(19)
N1-C9	$1.435(3)$	C3-N2-C4	115.2(2)
N1-C16	1.483(3)	N4-N3-C4	112.74(19)
N2-C3	1.338 (3)	C1-N3-C4	121.27(19)
N2-C4	1.348(3)	C6-N4-N3	103.5(2)
N3-N4	1.383(3)	C14-N6-C15	119.7(2)
N3-C1	1.386(3)	N3-C1-C2	114.8(2)
N3-C4	1.390 (3)	C1-C2-C3	121.0(2)
N4-C6	1.333(3)	N2-C3-C2	123.6(2)
N6-C14	1.382(3)	N2-C4-N3	123.9(2)
N6-C17	1.454(3)	N3-C4-C5	105.0(2)
N6-C15	$1.460(3)$	C4-C5-C6	105.4(2)
C1-C2	1.387(3)	N4-C6-C5	113.3(2)
C2-C3	$1.406(3)$	N6-C14-C13	122.6(2)
C3-C8	$1.502(3)$	N6-C14-C9	120.8(2)
C4-C5	1.400 (3)	N6-C15-C16	110.2(2)
C5-C6	$1.406(4)$	N1-C16-C15	109.1(2)
C15-C16	$1.516(4)$	N6-C17-C18	114.2(2)
C17-C18	1.511(4)	C17-C18-C11	112.0(2)
Compound 9b			
N1-C6	$1.364(5)$	C6-N1-C3	122.3(3)
N1-C3	1.371(5)	C6-N1-N2	124.1(3)
N1-N2	1.378(5)	C3-N1-N2	113.5(3)
N2-C1	$1.314(6)$	C1-N2-N1	103.7(3)
N3-C3	1.337(5)	C3-N3-C4	114.6(3)
N3-C4	1.340 (5)	N2-C1-C2	113.5(4)
N6-C12	1.390 (6)	C3-C2-C1	104.8(4)
N6-C17	$1.444(6)$	N3-C3-N1	123.5(4)
N6-C15	$1.482(6)$	N1-C3-C2	104.6(3)
C1-C2	$1.410(6)$	N3-C4-C5	124.9(4)
C2-C3	1.411(6)	C5-C4-C8	121.8(4)
C4-C5	1.388 (5)	C4-C5-C6	119.4(4)
C5-C6	1.387(6)	N1-C6-C5	115.3(4)
C15-C16	$1.506(8)$	C4-C8-Cl1	112.4(3)
C17-C18	1.521(8)		

3. ${ }^{1} \mathrm{H}$-NMR of target compounds

${ }^{1}$ H NMR for compound 7 m

${ }^{1} \mathrm{H}$ NMR for compound $7 \mathbf{n}$

${ }^{1}$ H NMR for compound $\mathbf{8 a}$

${ }^{1} \mathrm{H}$ NMR for compound $9 \mathbf{a}$

${ }^{1}$ H NMR for compound $\mathbf{8 b}$

${ }^{1}$ H NMR for compound 9 b

${ }^{1}$ H NMR for compound $\mathbf{8 c}$

${ }^{1}$ H NMR for compound 9c

${ }^{1}$ H NMR for compound 8d

${ }^{1}$ H NMR for compound 9d

${ }^{1}$ H NMR for compound $\mathbf{8 e}$

${ }^{1}$ H NMR for compound $9 \mathbf{e}$

${ }^{1}$ H NMR for compound $\mathbf{8 f}$

${ }^{1} \mathrm{H}$ NMR for compound $9 \mathbf{9}$

${ }^{1}$ H NMR for compound $\mathbf{8 g}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{9 g}$

${ }^{1}$ H NMR for compound $\mathbf{8 h}$

${ }^{1} \mathrm{H}$ NMR for compound 9 h

${ }^{1} \mathrm{H}$ NMR for comnound $\mathbf{8 i}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{9 i}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{8 j}$

${ }^{1} \mathrm{H}$ NMR for compound $\mathbf{9 j}$

4. ${ }^{13} \mathrm{C}$-NMR of target compounds
${ }^{13} \mathrm{C}$ NMR for compound 7 m

${ }^{13} \mathrm{C}$ NMR for compound $7 \mathbf{n}$

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 a}$

${ }^{13} \mathrm{C}$ NMR for compound 9 a

${ }^{13}$ C NMR for compound $\mathbf{8 b}$

${ }^{13} \mathrm{C}$ NMR for compound 9 b

${ }^{13} \mathrm{C}$ NMR for compound 8c

${ }^{13} \mathrm{C}$ NMR for compound 9c

${ }^{13}$ C NMR for compound 8d

${ }^{13} \mathrm{C}$ NMR for compound 9 d

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 e}$

${ }^{13} \mathrm{C}$ NMR for compound 9 e

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 f}$

${ }^{13} \mathrm{C}$ NMR for compound $9 \mathbf{f}$

${ }^{13} \mathrm{C}$ NMR for compound 8 g

${ }^{13} \mathrm{C}$ NMR for compound 9 g

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 h}$

${ }^{13} \mathrm{C}$ NMR for compound 9 h

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 i}$

${ }^{13}$ C NMR for compound $9 \mathbf{9}$

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{8 j}$

${ }^{13} \mathrm{C}$ NMR for compound $\mathbf{9 j}$

5. MS of target compounds

MS for compound $7 \mathbf{m}$

MS for compound $\mathbf{7 n}$

MS for compound 8a

MS for compound 9a

MS for compound $\mathbf{8 b}$

MS for compound 9b

MS for compound 8c

MS for compound 9 c

MS for compound 8d

MS for compound 9d

MS for compound $\mathbf{8 e}$

MS for compound $9 \mathbf{e}$

MS for compound $\mathbf{8 f}$

MS for compound $9 \mathbf{9 f}$

MS for compound $\mathbf{8 g}$

MS for compound $\mathbf{9 g}$

MS for compound $\mathbf{8 h}$

MS for compound $\mathbf{9 h}$

MS for compound $\mathbf{8 i}$

MS for compound $\mathbf{9 i}$

MS for compound $\mathbf{8 j}$

MS for compound $\mathbf{9 j}$

6. IR of target compounds

IR for compound $\mathbf{7 m}$

IR for compound $\mathbf{7 n}$

IR for compound 8a

IR for compound 9a

IR for compound $\mathbf{8 b}$

IR for compound 9b

IR for compound 8c

IR for compound $9 \mathbf{9 c}$

IR for compound 8d

IR for compound 9d

IR for compound $\mathbf{8 e}$

IR for compound $9 \mathbf{9}$

IR for compound $\mathbf{8 f}$

IR for compound $9 \mathbf{9 f}$

IR for compound $\mathbf{8 g}$

IR for compound $\mathbf{9 g}$

IR for compound $\mathbf{8 h}$

IR for compound $9 \mathbf{h}$

IR for compound $\mathbf{8 i}$

IR for compound $\mathbf{9 i}$

IR for compound $\mathbf{8 j}$

IR for compound $\mathbf{9 j}$

