黄启航,孙小琴.化学通报,2021,84(11):1231-1236.
过渡金属掺杂的双钙钛矿Ba2InNbO6的光催化分解水性能研究
Transition metal doped double perovskite Ba2InNbO6 as efficient photocatalyst for water splitting
投稿时间:2021-04-02  修订日期:2021-04-22
DOI:
中文关键词:  过渡金属掺杂  双钙钛矿  Ba2InNbO6  光催化产氢
英文关键词:Transition  metal doping, Double  perovskite, Ba2InNbO6,Photocatalysis
基金项目:国家自然科学基金项目(52002308)资助
作者单位E-mail
黄启航 西安建筑科技大学 hqh1215@gmail.com 
孙小琴* 西安建筑科技大学  
摘要点击次数: 543
全文下载次数: 0
中文摘要:
      双钙钛矿材料由于其丰富的化学组成及晶体结构被认为是一类优良的光催化材料,但大多数双钙钛矿氧化物仅表现出紫外光催化活性。因此,本文通过过渡金属离子Fe、Cr、Ni等掺杂调控双钙钛矿化合物Ba2InNbO6的能带结构,期望实现高效的可见光催化活性,并研究掺杂元素对晶体结构、微观形貌、表面状态等物化性质的影响。结果表明,过渡金属能够成功地引入到双钙钛矿的Ba2InNbO6的In位点,并能拓宽材料的可见光吸收范围。此外,过渡金属引入晶胞发生收缩,颗粒尺寸增大,表面亲水性也得到了极大的改善。与Ba2InNbO6相比,过渡金属掺杂的样品光催化析氢活性得到了极大的改善。其中,Ba2In0.9Fe0.1NbO6在全范围照射(λ≥250 nm)下的析氢量最高,达到了15.8μmol,并且在可见光(λ≥420 nm)照射下的析氢速率为2.71μmol/h,其对应的表观量子效率为0.016%。
英文摘要:
      Double perovskite materials are considered to be a class of excellent photocatalytic materials due to their rich chemical composition and crystal structure, but most double perovskite oxides only exhibit ultraviolet photocatalytic activity. In this paper, the band structure of the double perovskite compound Ba2InNbO6 is adjusted by doping with transition metal ions Fe, Cr, Ni, etc., and it is expected to achieve high-efficiency visible light catalytic activity, and to study the effect of doping elements on the crystal structure, microscopic morphology, surface state and other physical and chemical properties. The results show that transition metals can be successfully introduced into the In site of Ba2InNbO6 of double perovskite, and can be used as an effective dopant to broaden the visible light absorption range. In addition, the introduction of transition metals into the unit cell causes significant crystal shrinkage, and the surface hydrophilicity has also been greatly improved. Compared with Ba2InNbO6, the photocatalytic hydrogen evolution activity of transition metal doped samples has been greatly improved. Among them, Ba2In0.9Fe0.1NbO6 has the highest activity for hydrogen evolution under full-range irradiation (λ ≥ 250 nm), reaching 15.8 μmol, and the hydrogen evolution rate under visible light (λ ≥ 420 nm) irradiation is 2.71 μmol/h corresponding apparent quantum efficiency is 0.016%.
查看全文  查看/发表评论  下载PDF阅读器
关闭