张飞飏,张 宇,赵震,刘诗鑫.化学通报,2022,85(6):668-676.
低温等离子体催化消除炭烟的研究进展
Research advances on the catalytic elimination of soot via non-thermal plasma (NTP)
投稿时间:2021-11-26  修订日期:2021-12-22
DOI:
中文关键词:  低温等离子体  催化剂  消除炭烟  协同机理
英文关键词:Non-thermal plasma (NTP), Catalyst, Elimination of soot, Synergy mechanism
基金项目:国家自然科学基金项目((U1908204, 21761162016)和辽宁省教育厅科研项目(LJC201906)
作者单位E-mail
张飞飏 沈阳师范大学化学化工学院 能源与环境催化研究所 沈阳 feiyangzhang1996@126.com 
张 宇 沈阳师范大学化学化工学院 能源与环境催化研究所 沈阳  
赵震* 沈阳师范大学化学化工学院 能源与环境催化研究所 沈阳中国石油大学(北京)重质油国家重点实验室 北京 zhenzhao@cup.edu.cn 
刘诗鑫 沈阳师范大学化学化工学院 能源与环境催化研究所 沈阳  
摘要点击次数: 541
全文下载次数: 0
中文摘要:
      利用低温等离子体的非热力学平衡特性,在较低温度下将氧气分子转化为活性氧物种,从而将炭烟氧化消除,其炭烟消除速率和CO2选择性等受等离子体放电结构、能量密度和反应气氛影响。然而,低温等离子体单独作用存在能耗高,炭烟消除速率低和二次污染等问题。当低温等离子体与催化剂耦合并形成协同作用,可高效将气相分子氧气转化为高氧化活性的活性氧物种,从而实现在较低温度下快速氧化消除炭烟,有效降低能耗并提高CO2选择性。低温等离子体与催化剂协同催化技术具有反应启动速度快,处理流程短、效率高和应用范围广等特点,在炭烟快速消除方面极具应用前景。然而,由于低温等离子体与催化剂协同催化过程复杂,且大多数原位表征技术难以直接应用分析反应过程中间物种,协同催化机理研究进展缓慢。本文对低温等离子体氧化消除炭烟的研究进展进行了总结,探讨反应器结构、能量密度、气相组成及催化剂对低温等离子体催化消除炭烟性能的影响规律,总结低温等离子体与催化剂协同催化机理的研究进展,分析低温等离子体与催化剂协同催化消除炭烟的主要挑战和发展趋势。
英文摘要:
      Oxygen molecules are transformed into active oxygen species at low temperature by using the non-thermodynamic equilibrium characteristics of non-thermal plasma (NTP), thereby oxidizing and eliminating soot. The soot elimination rate and CO2 selectivity are affected by the discharge structure of plasma, energy density and reaction atmosphere. However, NTP alone has the problems, such as high energy consumption, low soot elimination rate and secondary pollution. When the NTP is coupled with the catalyst and forms a synergistic effect, it can efficiently convert gas-phase molecular oxygen into active oxygen species with high oxidation activity, thereby achieving rapid oxidation and elimination of soot at a lower temperature, effective reduction of energy consumption and improvement in CO2 selectivity. The NTP and catalyst synergistic catalysis technology has the characteristics of fast reaction start-up, short treatment process, high efficiency and wide application range, and has great application prospects in the rapid elimination of soot. However, due to the complex catalysis process of NTP and catalysts, and most in-situ characterization techniques are difficult to directly apply to analyze the intermediate species in the reaction process, the research progress of the cooperative catalysis mechanism has been slow. This review summarizes the research progress of NTP oxidation to eliminate soot, discusses the influence of reactor structure, energy density, gas composition and catalyst on the performance of NTP catalytic elimination of soot, and summarizes the research on the cooperative catalytic mechanism of NTP and catalyst Progress. The main challenges and development trend of synergistic catalytic elimination of soot by NTP and catalyst were analyzed.
查看全文  查看/发表评论  下载PDF阅读器
关闭