姜红,陈壮,郝小辉,章欣.化学通报,2024,87(1):118-121.
基于主成分分析-Fisher判别分析的食品类塑料瓶物证差分拉曼光谱分类
DifferentialRamanSpectralInspectionofFoodGradePlasticBottlesBasedonPrincipalComponentAnalysisandFisherDiscriminantAnalysis
投稿时间:2023-04-02  修订日期:2023-06-24
DOI:
中文关键词:  食品类塑料瓶  差分拉曼光谱  主成分分析  Fisher判别分析
英文关键词:differential Raman spectroscopy  principal component analysis  Fisher discriminant analysis  food grade plastic bottles
基金项目:食品药品安全防控山西省重点实验室开放课题项目(202204010931006)资助
作者单位E-mail
姜红* 甘肃警察职业学院刑事侦查系中国人民公安大学侦查学院 jiangh2001@163.com 
陈壮 甘肃政法大学司法警察学院(公安分院)
 
 
郝小辉 甘肃警察职业学院刑事侦查系  
章欣 南京简智仪器设备有限公司  
摘要点击次数: 457
全文下载次数: 179
中文摘要:
      食品类塑料瓶物证携带许多潜在证据信息,目前针对此类物证的检验研究尚处于探索阶段。利用差分拉曼光谱对46个食品类塑料瓶样品进行检验,依据样品材质及光谱特征峰可将样品分为三类。利用主成分分析(Principal component analysis, PCA)-Fisher判别分析,绘制主成分得分图,构建判别函数,建立分类模型。结果表明,食品类塑料瓶样品具有明显的聚类关系,原始分类与交叉验证分类准确率达到100 %。差分拉曼光谱结合PCA-Fisher判别分析,检验鉴别食品类塑料瓶物证具有一定的科学性。
英文摘要:
      The material evidence of plastic food grade bottles carries many potential evidentiary information, and the current research on the inspection of such material evidence is still in the exploratory stage. Using differential Raman spectroscopy, 46 food grade plastic bottle samples were examined. Samples can be divided into three categories based on their material and spectral characteristic peaks. Using principal component analysis - Fisher discriminant analysis, draw a principal component score map, construct a discriminant function, and established a classification model. The results showed that the food grade plastic bottle samples had a significant clustering relationship, and the accuracy rate of the original classification and cross validation classification reached 100%. Differential Raman spectroscopy combined with PCA-Fisher discriminant analysis has certain scientific significance in testing and identifying the material evidence of food grade plastic bottles.
查看全文  查看/发表评论  下载PDF阅读器
关闭