纳米金属氧化物氧空位缺陷抗菌机制及调控研究进展
Antibacterial Mechanisms and Regulation of Oxygen Vacancy Defects in Nanostructured Metal Oxides
投稿时间:2025-04-25  修订日期:2025-05-24
DOI:
中文关键词:  氧空位缺陷  纳米金属氧化物  活性氧  氧化损伤  抗菌活性
英文关键词:oxygen vacancy defects, nano-metal oxides, reactive oxygen species, oxidative damage, antibacterial activity
基金项目:云南省科技厅基础研究专项(202401AU070078)和云南省教育厅科学研究基金项目(2024J0420)
作者单位邮编
蒲俊美 云南农业大学 650201
王荣夫 中国科学院昆明动物研究所 
蒋明 云南农业大学 
何永美 云南农业大学 
湛方栋 云南农业大学 
梁新然 云南农业大学 
贺思腾 云南农业大学 
邱洁 云南农业大学 
祖艳群 云南农业大学 
李小艺* 云南农业大学 650201
摘要点击次数: 36
全文下载次数: 0
中文摘要:
      致病微生物的恶性增殖和广泛传播,使得开发新型高效的抗菌材料迫在眉睫。以环境友好兼备低成本的纳米金属氧化物代替传统的高污染高成本的抗霉剂为突破口,纳米金属氧化物的氧空位缺陷诱导环境中氧分子通过电子还原反应生成活性氧(ROS),从而氧化损伤灭活致病菌,达到绿色高效杀菌的目的。可控构建与精准调控氧空位缺陷为显著增强纳米金属氧化物的抗菌性能开辟了新方向。本文系统评述了氧空位缺陷驱动生成的ROS物质在纳米金属氧化物与微生物相互作用过程中扮演的角色及作用机制;重点梳理了在纳米级的各种形态金属氧化物材料晶体或界面上进行的氧空位缺陷构建、调变和分析。基于对现有调控氧空位缺陷瓶颈的批判性分析,本文提出建立氧空位缺陷-电子结构-抗菌性能的构效关系,进而拓展设计具有环境自适应性的智能氧空位缺陷调控-再生的体系,为发展兼具高生物安全性、持久抗菌活性及广谱抑菌功能的下一代智能抗菌材料提供新思考。
英文摘要:
      The malignant proliferation and widespread of pathogenic microorganisms make it urgent to develop new and efficient antimicrobial materials. Taking environmentally friendly and low-cost metal oxide nanomaterials as the impetus instead of traditional high-pollution and high-cost antibacterial agents, it indicates that oxygen vacancy defects of metal oxide nanomaterials promote the transformation of oxygen molecules into reactive oxygen species (ROS) based on the electron reduction reaction, achieving the green and efficient sterilization. Constructing and regulating the oxygen vacancy defects open up a new perspective for significantly enhancing the antibacterial performance of metal oxide nanomaterials. In our work, the contribution and mechanism of oxygen vacancy defect-driven ROS generation in the interaction between metal oxide nanomaterials and microorganisms were explored. In addition, focusing on the review of the construction, regulation and analysis of oxygen vacancy defects was carried out on the crystals or interfaces of various morphology of metal oxide materials within the nanometer scale. Based on a critical analysis of the current bottlenecks in regulating oxygen vacancy defects, our study proposes to establish the structure-activity relationship among oxygen vacancy defects, electronic structures, and antibacterial performance. This approach will facilitate the development of an intelligent regulation-regeneration system for oxygen vacancy defects that is environmentally adaptable. It will provide novel insights for designing next-generation smart antibacterial materials that integrate high biosafety, long-lasting antimicrobial activity and broad-spectrum antibacterial functionality.
  查看/发表评论  下载PDF阅读器
关闭